AFDye 488 Antibody Labeling Kit
The AFDye 488 Antibody Labeling Kit provides all of the necessary reagents to perform labeling of small amounts of antibodies or other proteins (except IgM antibodies) with green-fluorescent AFDye 488 (Alexa Fluor? 488 equivalent). Simply mix your antibody with the reaction additive and pre-measured dye provided, followed by a brief incubation, and the conjugate is ready for simple purification or staining without further purification. The antibody will be covalently labeled with an average of 4-6 dyes per label molecule per antibody molecule. This kit is optimized for the labeling of 100 μg of antibodies per reaction at 1 mg/mL.
This kit utilizes 2,3,5,6-tetrafluorophenyl (TFP) esters instead of succinimidyl ester (SE or NHS) often used in conventional labeling kits. TFP is another type of carboxylic acid derivative that reacts with primary amines to form covalent amide bonds. The amine linkage bond is identical to the one formed by the reaction between primary amines and NHS esters or sulfo-NHS esters. However, in most cases, TFP ester displays much better stability toward hydrolysis in aqueous media resulting in more efficiency and better reproducibility in labeling of biopolymers. As a result of improved efficiency, very little of the non-reactive (hydrolyzed) dye is left in the labeling mixture, which allows staining without further purification.
AFDye 488 produces pH insensitive (pH 3-10), more photostable, and brighter protein conjugates compared to the previous generation of dyes (fluorescein/FITC). AFDye 488 labeled antibodies can be used for different applications, such as flow cytometry, fluorescent microscopy, ELISA, and Western blotting.
The AFDye 488 Antibody Labeling Kit can be used as direct, less expensive replacement of Alexa Fluor? 488 Antibody Labeling Kit
Alexa Fluor is a registered trademarks of Thermo Fisher Scientific.
Labeling Method: Covalent labeling
Labeling Target: Lys (primary amine)
Number of Labeling Reactions: 1
Abs/Em Maxima: 494/517 nm
Spectrally Similar Dyes: FAM, Alexa Fluor? 488, Atto? 488, CF? 488A Dye, DyLight? 488
Abs/Em Maxima: 346/445 nmExtinction Coefficient: 19,000Spectrally Similar Dyes: Alexa Fluor? 350, CF? 350, DyLight 350, AMCAAZDye? 350 is a blue-fluorescent azide-activated probe that reacts with terminal alkynes via a copper-catalyzed click react…
Abs/Em Maxima: 402/424 nmExtinction Coefficient: 35,000Flow Cytometry Laser Line: 405 nmMicroscopy Laser Line: 405 nmSpectrally Similar Dyes: Alexa Fluor? 405, CF? 405, Cascade Blue?, DyLight? 405AZDye? 405 Azide is a water-soluble, pH-insensiti…
Abs/Em Maxima: 346/445 nmExtinction Coefficient: 19,000Spectrally Similar Dyes: Alexa Fluor? 350, CF? 350, DyLight 350, AMCAAZDye? 350 Alkyne (Alexa Fluor? 350 Alkyne equivalent) is a blue-fluorescent, alkyne-activated probe that reacts with azid…
Abs/Em Maxima: 430/537 nmExtinction Coefficient: 15,000Spectrally Similar Dyes: Alexa Fluor? 430, CF? 430AZDye? 430 Azide is a water-soluble, green-fluorescent azide-activated probe that reacts with terminal alkynes via a copper-catalyzed click re…
Abs/Em Maxima: 346/445 nmExtinction Coefficient: 19,000Spectrally Similar Dyes: Alexa Fluor? 350, CF? 350, DyLight 350, AMCAAZDye? 350 DBCO reacts with azides via a copper-free “click chemistry” reaction to form a stable triazole and does not re…
Abs/Em Maxima: 402/424 nmExtinction Coefficient: 35,000Flow Cytometry Laser Line: 405 nmMicroscopy Laser Line: 405 nmSpectrally Similar Dyes: Alexa Fluor? 405, CF? 405, Cascade Blue?, DyLight? 405AZDye? 405 Alkyne reacts with azides via a copper…
Abs/Em Maxima: 494/517 nmExtinction Coefficient: 73.000Flow Cytometry Laser Line: 488 nmMicroscopy Laser Line: 488 nmSpectrally Similar Dyes: Fluorescein, Alexa Fluor? 488, CF? 488A, DyLight? 488, Atto? 488AZDye? 488 Azide (Alexa Fluor? 488 Azi…
Abs/Em Maxima: 402/424 nmExtinction Coefficient: 35,000Flow Cytometry Laser Line: 405 nmMicroscopy Laser Line: 405 nmSpectrally Similar Dyes: Alexa Fluor? 405, CF? 405, Cascade Blue?, DyLight? 405ZDye? 405 DBCO reacts with azides via a copper-fr…